A Soft Subspace Clustering Algorithm with Log-transformed Distances
نویسندگان
چکیده
Entropy weighting used in some soft subspace clustering algorithms is sensitive to the scaling parameter. In this paper, we propose a novel soft subspace clustering algorithm by using log-transformed distances in the objective function. The proposed algorithm allows users to choose a value of the scaling parameter easily because the entropy weighting in the proposed algorithm is less sensitive to the scaling parameter. In addition, the proposed algorithm is less sensitive to noises because a point far away from its cluster center is given a small weight in the cluster center calculation. Experiments on both synthetic datasets and real datasets are used to demonstrate the performance of the proposed algorithm.
منابع مشابه
A Robust k-Means Type Algorithm for Soft Subspace Clustering and Its Application to Text Clustering
Soft subspace clustering are effective clustering techniques for high dimensional datasets. Although several soft subspace clustering algorithms have been developed in recently years, its robustness should be further improved. In this work, a novel soft subspace clustering algorithm RSSKM are proposed. It is based on the incorporation of the alternative distance metric into the framework of kme...
متن کاملCombination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting
In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...
متن کاملLocal Semantic Kernels for Text Document Clustering
Document clustering is a fundamental task of text mining, by which efficient organization, navigation, summarization and retrieval of documents can be achieved. The clustering of documents presents difficult challenges due to the sparsity and the high dimensionality of text data, and to the complex semantics of the natural language. Subspace clustering is an extension of traditional clustering ...
متن کاملTitle: Subspace Clustering of Microarray Data based on Domain Transformation
We propose a mining framework that supports the identification of useful knowledge based on data clustering. With the recent advancement of microarray technologies, we focus our attention on gene expression datasets mining. In particular, given that genes are often coexpressed under subsets of experimental conditions, we present a novel algorithm on subspace clustering. In contrast to previous ...
متن کاملSubspace Clustering of Microarray Data Based on Domain Transformation
We propose a mining framework that supports the identification of useful knowledge based on data clustering. With the recent advancement of microarray technologies, we focus our attention on gene expression datasets mining. In particular, given that genes are often coexpressed under subsets of experimental conditions, we present a novel subspace clustering algorithm. In contrast to previous app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015